1,608 research outputs found

    Smoking and tooth discolouration: findings from a national cross-sectional study

    Get PDF
    Background: Smoking is a risk factor of a number of oral diseases; the extent to which tobacco products influence dental aesthetics has not been widely investigated. The aim of this study was to determine satisfaction with own tooth colour of smokers and non-smokers and to investigate whether smokers have higher levels of self-assessed tooth discolouration compared to nonsmokersMethods: A cross sectional national study was conducted on sample of 6,000 UK adults. A total of 3,384 adults was interviewed. Smoking behaviour was recorded together with satisfaction with own tooth colour. Prevalence of perceived discolouration was measured by asking respondents to match their own tooth colour to one of a set of seven photographs of differing severities of discolouration.Results: Twenty eight percent of smokers reported having moderate and severe levels of tooth discolouration compared to 15% in non-smokers. As well as more often perceiving discolouration smokers were also more likely to be dissatisfied with their own tooth colour compared to nonsmokers.Conclusion: The study provides further evidence of the negative impact of tobacco smoking on dental aesthetics in the general public. The evidence provided by the study may be of value in short interventions for smoking cessation in the dental setting

    Teaching periodontal pocket charting to dental students: a comparison of computer assisted learning and traditional tutorials

    Get PDF
    AIM: The aim of this study was to compare the effectiveness of a computer assisted learning (CAL) programme with that of traditional small group tutorials in teaching theoretical and practical aspects of periodontal pocket charting. METHOD: Sixty-one third year undergraduate dental students were randomized to either receive a tutorial or to work through the CAL programme. Students using the CAL programme completed questionnaires relating to previous computer experience and the ease of use of the programme. All students were assessed immediately after the intervention by means of a confidence log, a practical exercise and a further confidence log. They were assessed again three weeks later by means of a confidence log and a multiple-choice written test. RESULTS: There were very few significant differences between groups for any of the assessments used. However, subjective comments indicated that students occasionally felt disadvantaged if they had not received a tutorial. CONCLUSION: CAL and traditional teaching methods are equally effective in teaching periodontal pocket charting to undergraduate dental students

    Predators reduce extinction risk in noisy metapopulations

    Get PDF
    Background Spatial structure across fragmented landscapes can enhance regional population persistence by promoting local “rescue effects.” In small, vulnerable populations, where chance or random events between individuals may have disproportionately large effects on species interactions, such local processes are particularly important. However, existing theory often only describes the dynamics of metapopulations at regional scales, neglecting the role of multispecies population dynamics within habitat patches. Findings By coupling analysis across spatial scales we quantified the interaction between local scale population regulation, regional dispersal and noise processes in the dynamics of experimental host-parasitoid metapopulations. We find that increasing community complexity increases negative correlation between local population dynamics. A potential mechanism underpinning this finding was explored using a simple population dynamic model. Conclusions Our results suggest a paradox: parasitism, whilst clearly damaging to hosts at the individual level, reduces extinction risk at the population level

    Stochastic population growth in spatially heterogeneous environments

    Full text link
    Classical ecological theory predicts that environmental stochasticity increases extinction risk by reducing the average per-capita growth rate of populations. To understand the interactive effects of environmental stochasticity, spatial heterogeneity, and dispersal on population growth, we study the following model for population abundances in nn patches: the conditional law of Xt+dtX_{t+dt} given Xt=xX_t=x is such that when dtdt is small the conditional mean of Xt+dtiXtiX_{t+dt}^i-X_t^i is approximately [xiμi+j(xjDjixiDij)]dt[x^i\mu_i+\sum_j(x^j D_{ji}-x^i D_{ij})]dt, where XtiX_t^i and μi\mu_i are the abundance and per capita growth rate in the ii-th patch respectivly, and DijD_{ij} is the dispersal rate from the ii-th to the jj-th patch, and the conditional covariance of Xt+dtiXtiX_{t+dt}^i-X_t^i and Xt+dtjXtjX_{t+dt}^j-X_t^j is approximately xixjσijdtx^i x^j \sigma_{ij}dt. We show for such a spatially extended population that if St=(Xt1+...+Xtn)S_t=(X_t^1+...+X_t^n) is the total population abundance, then Yt=Xt/StY_t=X_t/S_t, the vector of patch proportions, converges in law to a random vector YY_\infty as tt\to\infty, and the stochastic growth rate limtt1logSt\lim_{t\to\infty}t^{-1}\log S_t equals the space-time average per-capita growth rate \sum_i\mu_i\E[Y_\infty^i] experienced by the population minus half of the space-time average temporal variation \E[\sum_{i,j}\sigma_{ij}Y_\infty^i Y_\infty^j] experienced by the population. We derive analytic results for the law of YY_\infty, find which choice of the dispersal mechanism DD produces an optimal stochastic growth rate for a freely dispersing population, and investigate the effect on the stochastic growth rate of constraints on dispersal rates. Our results provide fundamental insights into "ideal free" movement in the face of uncertainty, the persistence of coupled sink populations, the evolution of dispersal rates, and the single large or several small (SLOSS) debate in conservation biology.Comment: 47 pages, 4 figure

    Who bullies whom at a garden feeder? Interspecific agonistic interactions of small passerines during a cold winter

    Get PDF
    Interspecific agonistic interactions are important selective factors for maintaining ecological niches of different species, but their outcome is difficult to predict a priori. Here, we examined the direction and intensity of interspecific interactions in an assemblage of small passerines at a garden feeder, focussing on three finch species of various body sizes. We found that large and mediumsized birds usually initiated and won agonistic interactions with smaller species. Also, the frequency of fights increased with decreasing differences in body size between the participants. Finally, the probability of engaging in a fight increased with the number of birds at the feeder

    Alternative Stable States Generated by Ontogenetic Niche Shift in the Presence of Multiple Resource Use

    Get PDF
    It has been suggested that when juveniles and adults use different resources or habitats, alternative stable states (ASS) may exist in systems coupled by an ontogenetic niche shift. However, mainly the simplest system, i.e., the one-consumer–two-resource system, has been studied previously, and little is known about the development of ASS existing in more complex systems. Here, I theoretically investigated the development of ASS caused by an ontogenetic niche shift in the presence of multiple resource use. I considered three independent scenarios; (i) additional resources, (ii) multiple habitats, and (iii) interstage resource sharing. The model analyses illustrate that relative balance between the total resource availability in the juvenile and adult habitats is crucial for the development of ASS. This balance is determined by factors such as local habitat productivity, subsidy inputs, colonization area, and foraging mobility. Furthermore, it is also shown that interstage resource sharing generally suppresses ASS. These results suggest that the anthropogenic impacts of habitat modifications (e.g., fragmentation and destruction) or interaction modifications (e.g., changes in ontogeny and foraging behavior) propagate through space and may cause or prevent regime shifts in the regional community structure

    Ecological equivalence: a realistic assumption for niche theory as a testable alternative to neutral theory

    Get PDF
    Hubbell's 2001 neutral theory unifies biodiversity and biogeography by modelling steady-state distributions of species richness and abundances across spatio-temporal scales. Accurate predictions have issued from its core premise that all species have identical vital rates. Yet no ecologist believes that species are identical in reality. Here I explain this paradox in terms of the ecological equivalence that species must achieve at their coexistence equilibrium, defined by zero net fitness for all regardless of intrinsic differences between them. I show that the distinction of realised from intrinsic vital rates is crucial to evaluating community resilience. An analysis of competitive interactions reveals how zero-sum patterns of abundance emerge for species with contrasting life-history traits as for identical species. I develop a stochastic model to simulate community assembly from a random drift of invasions sustaining the dynamics of recruitment following deaths and extinctions. Species are allocated identical intrinsic vital rates for neutral dynamics, or random intrinsic vital rates and competitive abilities for niche dynamics either on a continuous scale or between dominant-fugitive extremes. Resulting communities have steady-state distributions of the same type for more or less extremely differentiated species as for identical species. All produce negatively skewed log-normal distributions of species abundance, zero-sum relationships of total abundance to area, and Arrhenius relationships of species to area. Intrinsically identical species nevertheless support fewer total individuals, because their densities impact as strongly on each other as on themselves. Truly neutral communities have measurably lower abundance/area and higher species/abundance ratios. Neutral scenarios can be parameterized as null hypotheses for testing competitive release, which is a sure signal of niche dynamics. Ignoring the true strength of interactions between and within species risks a substantial misrepresentation of community resilience to habitat los

    Trophic Garnishes: Cat–Rat Interactions in an Urban Environment

    Get PDF
    BACKGROUND:Community interactions can produce complex dynamics with counterintuitive responses. Synanthropic community members are of increasing practical interest for their effects on biodiversity and public health. Most studies incorporating introduced species have been performed on islands where they may pose a risk to the native fauna. Few have examined their interactions in urban environments where they represent the majority of species. We characterized house cat (Felis catus) predation on wild Norway rats (Rattus norvegicus), and its population effects in an urban area as a model system. Three aspects of predation likely to influence population dynamics were examined; the stratum of the prey population killed by predators, the intensity of the predation, and the size of the predator population. METHODOLOGY/PRINCIPAL FINDINGS:Predation pressure was estimated from the sizes of the rat and cat populations, and the characteristics of rats killed in 20 alleys. Short and long term responses of rat population to perturbations were examined by removal trapping. Perturbations removed an average of 56% of the rats/alley but had no negative long-term impact on the size of the rat population (49.6+/-12.5 rats/alley and 123.8+/-42.2 rats/alley over two years). The sizes of the cat population during two years (3.5 animals/alley and 2.7 animals/alley) also were unaffected by rat population perturbations. Predation by cats occurred in 9/20 alleys. Predated rats were predominantly juveniles and significantly smaller (144.6 g+/-17.8 g) than the trapped rats (385.0 g+/-135.6 g). Cats rarely preyed on the larger, older portion of the rat population. CONCLUSIONS/SIGNIFICANCE:The rat population appears resilient to perturbation from even substantial population reduction using targeted removal. In this area there is a relatively low population density of cats and they only occasionally prey on the rat population. This occasional predation primarily removes the juvenile proportion of the rat population. The top predator in this urban ecosystem appears to have little impact on the size of the prey population, and similarly, reduction in rat populations doesn't impact the size of the cat population. However, the selected targeting of small rats may locally influence the size structure of the population which may have consequences for patterns of pathogen transmission

    Microarray Method for the Rapid Detection of Glycosaminoglycan–Protein Interactions

    Get PDF
    Glycosaminoglycans (GAGs) perform numerous vital functions within the body. As major components of the extracellular matrix, these polysaccharides participate in a diverse array of cell-signaling events. We have developed a simple microarray assay for the evaluation of protein binding to various GAG subclasses. In a single experiment, the binding to all members of the GAG family can be rapidly determined, giving insight into the relative specificity of the interactions and the importance of specific sulfation motifs. The arrays are facile to prepare from commercially available materials
    corecore